32 research outputs found

    GENESIM : genetic extraction of a single, interpretable model

    Get PDF
    Models obtained by decision tree induction techniques excel in being interpretable.However, they can be prone to overfitting, which results in a low predictive performance. Ensemble techniques are able to achieve a higher accuracy. However, this comes at a cost of losing interpretability of the resulting model. This makes ensemble techniques impractical in applications where decision support, instead of decision making, is crucial. To bridge this gap, we present the GENESIM algorithm that transforms an ensemble of decision trees to a single decision tree with an enhanced predictive performance by using a genetic algorithm. We compared GENESIM to prevalent decision tree induction and ensemble techniques using twelve publicly available data sets. The results show that GENESIM achieves a better predictive performance on most of these data sets than decision tree induction techniques and a predictive performance in the same order of magnitude as the ensemble techniques. Moreover, the resulting model of GENESIM has a very low complexity, making it very interpretable, in contrast to ensemble techniques.Comment: Presented at NIPS 2016 Workshop on Interpretable Machine Learning in Complex System

    GENDIS : genetic discovery of shapelets

    Get PDF
    In the time series classification domain, shapelets are subsequences that are discriminative of a certain class. It has been shown that classifiers are able to achieve state-of-the-art results by taking the distances from the input time series to different discriminative shapelets as the input. Additionally, these shapelets can be visualized and thus possess an interpretable characteristic, making them appealing in critical domains, where longitudinal data are ubiquitous. In this study, a new paradigm for shapelet discovery is proposed, which is based on evolutionary computation. The advantages of the proposed approach are that: (i) it is gradient-free, which could allow escaping from local optima more easily and supports non-differentiable objectives; (ii) no brute-force search is required, making the algorithm scalable; (iii) the total amount of shapelets and the length of each of these shapelets are evolved jointly with the shapelets themselves, alleviating the need to specify this beforehand; (iv) entire sets are evaluated at once as opposed to single shapelets, which results in smaller final sets with fewer similar shapelets that result in similar predictive performances; and (v) the discovered shapelets do not need to be a subsequence of the input time series. We present the results of the experiments, which validate the enumerated advantages

    MINDWALC : mining interpretable, discriminative walks for classification of nodes in a knowledge graph

    Get PDF
    Background Leveraging graphs for machine learning tasks can result in more expressive power as extra information is added to the data by explicitly encoding relations between entities. Knowledge graphs are multi-relational, directed graph representations of domain knowledge. Recently, deep learning-based techniques have been gaining a lot of popularity. They can directly process these type of graphs or learn a low-dimensional numerical representation. While it has been shown empirically that these techniques achieve excellent predictive performances, they lack interpretability. This is of vital importance in applications situated in critical domains, such as health care. Methods We present a technique that mines interpretable walks from knowledge graphs that are very informative for a certain classification problem. The walks themselves are of a specific format to allow for the creation of data structures that result in very efficient mining. We combine this mining algorithm with three different approaches in order to classify nodes within a graph. Each of these approaches excels on different dimensions such as explainability, predictive performance and computational runtime. Results We compare our techniques to well-known state-of-the-art black-box alternatives on four benchmark knowledge graph data sets. Results show that our three presented approaches in combination with the proposed mining algorithm are at least competitive to the black-box alternatives, even often outperforming them, while being interpretable. Conclusions The mining of walks is an interesting alternative for node classification in knowledge graphs. Opposed to the current state-of-the-art that uses deep learning techniques, it results in inherently interpretable or transparent models without a sacrifice in terms of predictive performance

    Data mining in the development of mobile health apps : assessing in-app navigation through Markov chain analysis

    Get PDF
    Background: Mobile apps generate vast amounts of user data. In the mobile health (mHealth) domain, researchers are increasingly discovering the opportunities of log data to assess the usage of their mobile apps. To date, however, the analysis of these data are often limited to descriptive statistics. Using data mining techniques, log data can offer significantly deeper insights. Objective: The purpose of this study was to assess how Markov Chain and sequence clustering analysis can be used to find meaningful usage patterns of mHealth apps. Methods: Using the data of a 25-day field trial (n=22) of the Start2Cycle app, an app developed to encourage recreational cycling in adults, a transition matrix between the different pages of the app was composed. From this matrix, a Markov Chain was constructed, enabling intuitive user behavior analysis. Results: Through visual inspection of the transitions, 3 types of app use could be distinguished (route tracking, gamification, and bug reporting). Markov Chain-based sequence clustering was subsequently used to demonstrate how clusters of session types can otherwise be obtained. Conclusions: Using Markov Chains to assess in-app navigation presents a sound method to evaluate use of mHealth interventions. The insights can be used to evaluate app use and improve user experience

    Do Not Sleep on Linear Models: Simple and Interpretable Techniques Outperform Deep Learning for Sleep Scoring

    Full text link
    Over the last few years, research in automatic sleep scoring has mainly focused on developing increasingly complex deep learning architectures. However, recently these approaches achieved only marginal improvements, often at the expense of requiring more data and more expensive training procedures. Despite all these efforts and their satisfactory performance, automatic sleep staging solutions are not widely adopted in a clinical context yet. We argue that most deep learning solutions for sleep scoring are limited in their real-world applicability as they are hard to train, deploy, and reproduce. Moreover, these solutions lack interpretability and transparency, which are often key to increase adoption rates. In this work, we revisit the problem of sleep stage classification using classical machine learning. Results show that state-of-the-art performance can be achieved with a conventional machine learning pipeline consisting of preprocessing, feature extraction, and a simple machine learning model. In particular, we analyze the performance of a linear model and a non-linear (gradient boosting) model. Our approach surpasses state-of-the-art (that uses the same data) on two public datasets: Sleep-EDF SC-20 (MF1 0.810) and Sleep-EDF ST (MF1 0.795), while achieving competitive results on Sleep-EDF SC-78 (MF1 0.775) and MASS SS3 (MF1 0.817). We show that, for the sleep stage scoring task, the expressiveness of an engineered feature vector is on par with the internally learned representations of deep learning models. This observation opens the door to clinical adoption, as a representative feature vector allows to leverage both the interpretability and successful track record of traditional machine learning models.Comment: The first two authors contributed equally. Submitted to Biomedical Signal Processing and Contro
    corecore